BaseSpace™ CLI v1.0.0 is here!

By Swathi A. Ramani, Staff Product Manager – BaseSpace Sequence Hub

 If you’ve been using BaseSpace Sequence Hub for some time now, then you probably know that there is a lot more to the platform than the browser console. The Command Line Interface (CLI) is an easy-to-use command line tool that enables users to do more with BaseSpace via managing common (and not so common) tasks associated with their genomic data and analysis.

The CLI has been in development for over 4 years, and was created by our talented UK team. They needed automation tools to help sequence more than 20 petabases of data for the 100k Genomes Project. Over the past few months, we’ve been hard at work on the next generation of the CLI. We are thrilled to announce that our CLI is no longer in Beta! In our latest release, we have launched the officially supported BaseSpace (BS) Sequence Hub (BSSH) CLI v1.0.0, and all the exciting features that come with it. In the years since the initial release, we saw incredible product uptake and a lot of positive feedback from the BaseSpace community. With this launch announcement, we are delivering on some of your biggest requests for a robust feature set that simplifies data and analysis wrangling and process automation. This is a great foundation on which we can continue expanding our toolset.

Rich Built-in Features

BS CLI v1.0.0 is a completely different beast from its previous version. With just one file to download and configure, you can control multiple BaseSpace services and automate them through scripts, including uploading samples, downloading runs, launching or stopping apps and workflows, setting custom quality filters for your runs, launching analysis workflows, generate pre-signed URLs, and much more ! 

These include: 

  • Flexible install process: The CLI is installed by downloading a single binary with no additional dependencies, which enables you to install the CLI in an environment where you do not have administrator privileges.
  • Support for Linux, Mac and Windows (32 and 64 bit) operating systems
  • Rich options for listing details and filtering with customized output for seamless multi-command pipelines and scripts
  • Powerful data management features including creation, renaming and deletion of BSSH entities
  • Efficient upload of FASTQ datasets or any other file types, coupled with fast download of runs, projects, biosamples and datasets
  • Parameterize, launch, monitor and kill analyses running remotely in BSSH

Importantly, we’ve made sure the above features work nicely together so you don’t have to do the plumbing yourself. For a full list of worked examples visit our help site.

Try It Out Today! 

Our new BS CLI v1.0.0 is ready to serve as your standard toolchain to programmatically read, create and manipulate data in your BSSH account, automate routine tasks, as well as to efficiently manage your applications. You can try it out right now by following the instructions on our help site

If you are using existing tools like BaseMount or BaseSpace Copy, these will continue to work. However, as we continue to improve the developer experience, we hope to consolidate our existing tools and add new features to the BS CLI v1.0.0 toolchain. 

The more you use BS CLI v1.0.0, the more you will see how powerful it is. We can’t wait to see what you build with it! As always, let us know how we are doing. We want to incorporate best practices in the toolchain as much as possible, so it becomes customary, so please submit any requests in via this blog, twitter or techsupport@illumina.com. Happy hacking! 

  • The BaseSpace Sequence Hub Team

For Research Use only.

QB#8581

 

 

 

DRAGEN™ Enrichment App – Accurate, rapid analysis for germline and somatic exome experiments

Author: Eric Allen, Associate Director of Bioinformatics at Illumina

As part of the new DRAGEN v3.4 launch, the Illumina software development team has released a new BaseSpace-exclusive DRAGEN app –DRAGEN Enrichment v3.4. Combining the best of DRAGEN with Illumina’s legacy Enrichment 3 App, the DRAGEN Enrichment app provides ultra-rapid analysis and improved accuracy all at a lower cost per sample.

The DRAGEN Enrichment app is the preferable method for analyzing enrichment data with DRAGEN, delivering a full suite of enrichment specific metrics and reporting.

Here is what to know:

  • The DRAGEN Enrichment App is faster and more accurate vs Enrichment (Isaac/Starling) and BWA Enrichment (BWA/GATK) apps, as demonstrated via the visuals below
  • Variant Calling:
    • Small variant calling – The app includes germline and somatic (low-frequency) small variant calling (tumor only); outputs VCF and gVCF in same analysis
      • Note: Tumor-normal analysis can be conducted by first running the DRAGEN Enrichment app on all their normal and tumor samples, and then running the DRAGEN Somatic app on the resulting BAM files for the Tumor/Normal pairs.
    • Copy number variant (CNV) calling – utilize CNV baseline files based on a panel of normals
    • Structural variant calling
  • Enrichment metrics generated:
    • Read/base enrichment padded/unpadded
    • Uniformity
    • % bases covered at 1x, 10x, 20x, 50x
    • Picard HsMetrics enabled by checkbox
  • Variety of reference options supported, including hg19, GRCh38 and custom references
  • Includes built-in targeted region BED files for common enrichment panels, and accepts custom targeted region BEDs
  • Extensive reporting:
    • In-browser, PDFs, and CSVs
    • Single sample and aggregate reports
  • Integrated variant annotation (Nirvana) and variant browser

The improved small variant calling over other available BaseSpace app solutions is shown below for one replicate of Coriell sample NA12878 with 106x depth:

Analysis AppApp Execution TimeDRAGEN-only Execution TimeSNV RecallSNV PrecisionIndel RecallIndel Precision
DRAGEN Enrichment v3.4.516m 4s6m 50s95.04%99.49%86.90% 92.18%
(Isaac/Starling) Enrichment v3.1.053m 20sNA93.26%99.38%78.29% 86.90%
BWA Enrichment v2.1.21h 23m 2sNA90.66% 99.78%72.85% 89.44%


• Example sample (s01-NFE-CEX-NA12878-demo.vcf) was prepared using Nextera Flex for Enrichment Library Preparation kit with dual indices and sequenced on a NovaSeq™ S2 flow cell: https://basespace.illumina.com/s/FaxWSm2X1gwO
• Variant accuracy comparison was performed using the Variant Calling Assessment Tool v3.2.0 app.

CNV calling is also enabled in the DRAGEN Enrichment app. The screenshot below from IGV shows a 937,697 bp CNV loss found in a melanoma cancer sample (Me01/ERR174231) around the chromosomal region chr9:125239269-126176965. The sample data was obtained from NCBI’s Sequence Read Archive (accession ERR174231) using the SRA Import BaseSpace App.

Project: SRA: ERP001844 (Agilent SureSelect – Exome CNV Detection – Melanoma). Publication: Magi et al.

Somatic/low-frequency variant calling is also enabled. The table below demonstrates the usefulness of this somatic calling tool:

Variant TypeChr Pos Gene Variant HD753 – Expected VF (%) HD753 – Measured VF (DRAGEN Enrichment) (%)
SNV Low GCchr.3 178936091 PIK3CA E545K 5.63.8
SNV High GC chr.19 3118942 GNA11 Q209L 5.66
Long Deletion chr.7 55242464 EGFR ΔE746 – A750 5.33.3
Long Insertion chr.755248998 EGFR V769_D770insASV 5.63.7
SNV High GC chr.14 105246551 AKT1 E17K 55.7

Project: NovaSeq S4: Nextera Flex for Enrichment (HCC1187, HCC1395, HCC1954, HD753, Coriell Mixture). 1% VF cutoff

We’ve also incorporated many of the comprehensive metrics and reporting features built into the legacy Enrichment 3.1.0 app, including read-, base-, and target-level enrichment metrics, as well as the variant table for simple variant call browsing and filtering.

We hope this update enables you to discover new insights. Stay tuned for more app announcements, and let us know if you have any questions.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.
QB#8389

Putting Your Privacy First

BaseSpace™ Sequence Hub is used by investigators around the world to facilitate and scale their sequencing and genomic data analysis operations. At Illumina, we understand that security, privacy, and confidentiality are complex issues, and we are committed to protecting our software-as-a-service (SaaS) customers’ data.

To ensure that our customers remain compliant with upcoming changes to the EU General Data Protection Regulation (GDPR), we’ve made a number of updates to privacy practices, policies and agreements that are effective May 25, 2015 for all users globally.  These changes include explaining in more detail how we use your information, including your choices, rights, and controls.

Privacy and compliance is a shared responsibility between Illumina and our customers. We are responsible for the security of the BaseSpace Sequence Hub platform. Our cloud provider, Amazon Web Services (AWS) is responsible for providing the tools, services and functionality that enable both the data controller (our customers) and the data processor (Illumina) to be successful.

 AWS-ILMN_Shared_Responsibility_Model

Figure 1: Shared responsibility Model

 

A short summary of our changes:

  • GDPR and Terms & Conditions (T&Cs). GDPR places new obligations on organizations that process EU personal data. As a result, we have updated our business operational practices. The following documents (Privacy Policy (Link), and Terms & Conditions (Link)) better explain our customers’ and users’ rights, and their relationship with Illumina. In addition all our NGS product support pages have been updated with a Privacy & Security section (Link).
  • Improved clarity and transparency.As a key part of GDPR compliance, we’ve described our data processing practices in clear language. For instruments sending Performance Data (IPD) to BaseSpace Sequence Hub, or connected in the Run Monitoring or Storage and Analysis mode, our updated Illumina®Proactive Technical Note (Link) clearly explains what data is sent to BaseSpace in each of the connectivity modes.
  • Data Protection Addendum:BaseSpace Sequence Hub leverages AWS to deliver its services. The updated AWS Service Terms (Link) incorporate the GDPR Data Processing Addendum (DPA) and will automatically apply to all customers. Illumina is willing to sign a DPA for customers who ask for it.
  • Opt-in & Opt-out:Sharing data with BaseSpace Sequence Hub, irrespective of connectivity mode, is entirely controlled by our customers. If you would like to opt out of sharing Instrument Performance Data (IPD), Run Monitoring, or Storage and Analysis mode, you can do so at any time.

In addition, we are continually reviewing and updating our security best practices to safeguard your data and the services we provide. We are ISO 27001 certified, which has a direct emphasis on international compliance and governance. Please review our security and data privacy whitepaper (Link) to learn more about our security practices.

We hope this makes your use of our SaaS products much easier. As always, please contact us at informatics@illumina.com if you have any questions.

QB#6005

Enhanced Run Monitoring in BaseSpace™ Sequence Hub

The ability to monitor sequencing runs in real time helps users identify issues that prevent costly sequencing errors. Many users rely on the Sequencing Analysis Viewer (SAV) to access detailed quality metrics generated by the real-time analysis software on Illumina instruments.

BaseSpace Sequence Hub has enabled users to remotely monitor their sequencing runs with the Run Charts function with a very similar interface to that of SAV. We have recently released a synchronized update with SAV to offer an expanded set of metrics for monitoring run quality. At the same time, we have added a few capabilities previously only present in SAV. These enhancements provide a consistent experience and enable users to make informed decisions on the quality of their sequencing runs – whether they are standing in front of their instrument accessing SAV or monitoring the run remotely using BaseSpace Sequence Hub.

Expanded menu of metrics that maintains consistency with SAV

BaseSpace Sequence Hub now includes per cycle Phasing and Pre-phasing metrics, % No Call, and Median QScore measures in the Charts section of Run Monitoring. These measures were also released as part of SAV 2.4.5. % No Call & Median QScores are available for all sequencing platforms. The new Phasing/Pre-phasing metrics are available for all platforms except MiSeq and HiSeq 2000/2500.

expanded menu.png

Traditional Phasing (and pre-phasing) metrics, which were calculated once at cycle 25, are now listed as “Legacy Phasing Rate.” The new per-cycle weights are listed as “Phasing Weight” in the Run Charts.

traditional phasing.png

Improved usability

The Charts section of Run Monitoring now includes the same menu structure as SAV 2.4.5. Now, metrics in the drop down menus only appear if they are available for the cycle, significantly improving the usability of the charts.

Extracted, Called, and Scored cycles have a minimum-maximum range

Run Monitoring now provides Extracted, Called, and Scored cycles as a minimum-maximum range during an instrument run. Previously, Run Monitoring showed only the maximum cycles. A wide spread between the leading and lagging tile might be an indication of a run problem. Now users can easily spot a problem with their run on both SAV and BaseSpace Sequence Hub.

New Metrics in Both SAV and BaseSpace Sequence Hub

In addition to the changes enumerated above, both SAV and BaseSpace Sequence Hubnow include Occupied Count (K) and % Occupied measures in the Charts section of Run Monitoring for NovaSeq systems. The Occupied Count is a measure of the number of wells on the flow cell with DNA. Adding these new metrics will help users understand their loading concentrations and identify issues with their sequencing run.

new metrics

 

For Research Use Only. Not for use in diagnostic procedures.

BaseSpace™ Clarity LIMS NovaSeq™ Integration v2.2

Integration and interoperability between laboratory systems—or lack thereof—remains a challenge for those performing next-generation sequencing (NGS) or other genomics studies.1 To address this challenge, we developed version 2.2 of the integration between BaseSpace Clarity LIMS and the NovaSeq 6000 instrument. This integration now supports the NovaSeq S4 flow cell, as well as the NovaSeq Xp protocol.

Picture1
Figure 1: The NovaSeq 6000 version 2.0 Workflow in BaseSpace Clarity LIMS that supports the integration version 2.2

The NovaSeq S4 flow cell delivers up to 6 TB of output in two days and is ideally suited for high intensity sequencing applications. Users can now sequence up to 48 human genomes or 384 exomes per run in less than 48 hours. This innovation paves the way for large-population-scale initiatives at the lowest price per sample, and enables labs to cost effectively perform human whole-genome sequencing.2 And now, users of both BaseSpace Clarity LIMS and the NovaSeq 6000 instrument can access this out-of-the box integration to get up and running with their system sooner.

The new integration helps users track samples throughout the workflow. Specifically, it:

  • Supports S13, S2, and S4 flow cells per sample
  • Supports different applications on the same flow cell
  • Calculates samples and reagents volumes based on the flow cell type
  • Creates an output file for use with liquid handling robots
  • Validates every step in the workflow

The new integration also tracks sequencing run information in BaseSpace Clarity LIMS to help with troubleshooting or trending:

  • Run recipe files (JSON) are automatically generated to set up and initiate the run
  • Sample sheets, which are compatible with BaseSpace Sequence Hub and bcl2fastq
    v 2.19, are automatically generated and placed directly on the NovaSeq 6000 instrument
  • Sequencing run are tracked and run metrics are parsed per lane and per flow cell

If you have questions about this integration, please email Illumina Technical Support.

References

  1. Next-Generation Sequencing Informatics: Challenges and … http://www.bing.com/cr?IG=74008A18392242E59F11965A936C0331&CID=1B0873003B0C6EB91053783A3A0A
    6F0E&rd=1&h=qZ8eqx6ov_OxkAzDtTWfrbsSZM2WP_pCoQuO66f-AVI&v=1&r=http%3a%2f%2fwww.archivesofpathology.org%2fdoi%2f10.5858%2farpa.2015-0507-RA&p=DevEx,5067.1. Accessed November 14, 2017.
  2. Illumina.com. (2017). Illumina Releases NovaSeq S4 Flow Cell and NovaSeq Xp Workflow. [online] Available at: https://www.illumina.com/company/news-center/press-releases/2017/2308795.html [Accessed 16 Nov. 2017].
  3. Upcoming flow cell in the NovaSeq 6000 instrument portfolio

For Research Use Only. Not for Use in Diagnostic Procedures.

Join us for our upcoming webinar

Join us for our upcoming webinar: High-volume sequence analysis with BaseSpace Sequence Hub and Edico DRAGEN apps, on Dec 13 at 10AM (PT)

The latest sequencing technologies enable unprecedented throughput and redefine limits for many labs. To adapt, these labs must redefine how they work – by automating tasks to reduce touchpoints and by simplifying workflows with integration and robust analysis tools.

In this webinar, we describe BaseSpaceSequence Hub and how the newest features support high throughput, high-volume sequencing. We demonstrate how customers can progress from flowcell loading to variant analysis with zero touchpoints by using the Whole Genome Sequencing or Edico DRAGEN apps. Additionally, we describe how the integration with BaseSpace Variant Interpreter enables users to interpret and generate reports of identified variants.

Register now

For Research Use Only. Not for use in diagnostic procedures.

 

BaseSpace™ Clarity LIMS Integration to VeriSeq™ NIPT Solution

We are pleased to announce the launch of the first integration between the Illumina VeriSeq™ Noninvasive Prenatal Testing (NIPT) Solution and BaseSpace Clarity LIMS.

The VeriSeqTM NIPT Solution is an in vitro diagnostic test intended for use as a sequencing‐based screening test for the detection of fetal aneuploidies from maternal peripheral whole blood samples in pregnant women of at least 10 weeks gestation. VeriSeq NIPT provides information regarding aneuploidy status for chromosomes: 21, 18, 13, X, and Y. This product must not be used as the sole basis for diagnosis or other pregnancy management decisions.

To facilitate use of the solution, we have implemented an integration with BaseSpace™ Clarity LIMS, which allows users of both to centralize data into one location from sample accessioning to reporting, without altering the IVD CE Marked VeriSeqTM NIPT Solution.

Picture1.png
Figure 1. The VeriSeq NIPT workflow in BaseSpace Clarity LIMS.

At a high level, the integration includes:

  • Automatic generation of a sample upload sheet that is compatible with Workflow Manager. The sample sheet generated captures VeriSeq NIPT Sample Type and Sex Chromosomes fields required by Workflow Manager.
  • Preconfigured VeriSeq NIPT v1.0 workflow containing a protocol that maps to the VeriSeq NIPT Software Solution for both library prep and reporting.
  • Preconfigured VeriSeq NIPT v1.0 Validation workflow and protocol that allows for validation of the integration.
  • Batching step that includes automated validation to ensure batch size equals 48 or 96 – including No Template Controls (NTCs).
  • Generation of sample sheet that is designed to be used by the VeriSeq NIPT Workflow Manager to start the run.
  • An analysis step that populates NIPT report data back into BaseSpace Clarity LIMS. For BaseSpace Clarity LIMS Silver customers, the report data must be manually uploaded. However, for BaseSpace Clarity LIMS Gold users, the report data are automatically uploaded.

To learn more about the BaseSpace Clarity LIMS integration to the VeriSeq™ NIPT Solution, please contact us.

For Research Use Only. Not for use in diagnostic procedures.